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Abstract.—Populations of Atlantic salmon Salmo salar can be restored and enhanced 
through planting of green or eyed eggs (embryos) in rivers and by releasing fry, parr, smolts, 
or postsmolts. The success of the releases varies with time and site of release, broodstock 
origin, size and age of the fish, and rearing and release techniques applied. However, egg, 
fry or parr releases cannot be used for augmenting populations above the carrying capacity 
of the water course. To surpass the carrying capacity, the fish should be released as smolts or 
postsmolts. Smolts released in rivers during spring migrate to sea for feeding but return to 
the river of release for spawning. Atlantic salmon released at the postsmolt stage may return 
to the release site when adult, but thereafter, they may stray to any of a number of rivers for 
spawning. As a result of ecological interactions, released juvenile hatchery fish may partly 
displace, increase the mortality, and decrease the growth rate, adult size, reproductive output, 
biomass, and production of wild conspecifics through density-dependent mechanisms work-
ing in freshwater. Hatchery-reared Atlantic salmon is usually competitively inferior to wild 
conspecifics both during feeding and spawning in rivers, due to environmental impacts and 
genetic changes that occur during the juvenile rearing. Habitat restoration is preferred when 
restoring endangered, threatened, or weak populations. Degraded spawning habitats can be 
reconstructed, and poor freshwater quality can be mitigated. In regulated rivers, rapid fluc-
tuations in water level should be avoided, and the migratory activity of the fish can be stimu-
lated by increased water flow. Populations can also be enhanced by expanding the accessible 
nursery habitat by use of artificial fishways through human induced or natural migration 
hindrances. Adaptive management practice is useful when restoring and rehabilitating popu-
lations and habitats. More knowledge is needed about environmental and genetic influences 
on the phenotype of hatchery fish and how habitats constrain salmon production in rivers.
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Introduction
Restoration ecology, or the study of renewing de-
graded, damaged, or destroyed ecosystems and pop-
ulations, is a rapidly growing field, stimulated by 
new knowledge about population and community 
ecology, behavioral ecology, genetics, and evolution 
(Jordon III et al. 1999; Van Andel and Aronson 
2005). With the advancement of modern technol-
ogy, the human ability to destroy habitats and use 
and overexploit populations have escalated at the 
same time as the awareness of our dependence of 
and responsibility for intact ecosystems have ma-
tured. Thus, researchers and laymen are searching 

for indicators of unspoiled ecosystems, and Atlantic 
salmon Salmo salar has become a symbol of clean, 
healthy aquatic ecosystems (Mills 1989).

Atlantic salmon forms anadromous popula-
tions. It spawns in freshwater. The offspring rear in 
rivers and lakes for 1–6 years before they migrate to 
sea as smolts, 10–30 cm in length. The postsmolts 
feed in the ocean for 1–4 years before attaining 
maturity and returning to their river of origin for 
spawning. An individual river may support one or 
more Atlantic salmon populations (Garcia de Lean-
iz et al. 2007).

Atlantic salmon is a very popular sporting spe-
cies, and it is recognized as a delicacy. Therefore, the 
fishing pressure is high. The juvenile production in 
freshwater is recognized as the main limiting factor 
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for the production of wild Atlantic salmon (Jons-
son et al. 1998). Therefore, to increase the catch, 
populations have been enhanced by hatcheries for 
more than 150 years (Jonsson and Fleming 1993). 
In parallel with this activity, the salmon catch in 
the North Atlantic increased to a maximum in the 
mid-1970s. Since then, the catch has declined. This 
may be partly a result of reduced smolt production 
(Klemetsen et al. 2003; Jonsson and Jonsson 2004a; 
Quinn et al. 2006).

In freshwater, habitat destruction and altera-
tions and introductions of exotic organisms have 
decimated salmon populations. For instance, acidi-
fication of Norwegian rivers has eradicated the At-
lantic salmon in 25 water courses during the past 
century (Hesthagen and Hansen 1991). The mono-
gene parasite Gyrodactylus salaries, accidentally 
introduced to Norway from the Baltic in the early 
1970s, has since then decimated the juvenile Atlan-
tic salmon production by between 80% and 90% in 
another 45 Norwegian rivers (Johnsen and Jensen 
1991). These losses represent a reduction of about 
50% in the Norwegian production of wild Atlan-
tic salmon smolts (Hesthagen and Hansen 1991). 
Since the 1970s, the farming of Atlantic salmon has 
increased gradually and, with that, the escapement 
of fish from fish farms. The escapees may impact the 
wild Atlantic salmon populations negatively through 
ecological interactions, genetic introgressions, and 
the spreading of contagious diseases (Johnsen and 
Jensen 1994; Fleming et al. 2000; McGinnity et 
al. 2003; Jonsson and Jonsson 2006). Movements 
of hatchery fish between regions also increase the 
potential for the spreading of diseases such as fu-
runculosis and proliferative kidney disease, killing 
salmon in the wild (Johnsen and Jensen 1994; Tops 
et al. 2006). Table 1 summarizes effects of hatchery 
salmon on wild conspecifics.

Survival and growth of Atlantic salmon at sea 
have also decreased with the growth of the salmon 
farming industry, and the abundances of marine 
parasites such as sea lice Lepeophtheirus salmonis and 
Caligus spp. have increased, with harmful effects 
on salmonids at sea (Heuch et al. 2005; Skilbrei 
and Wennevik 2006; Hvidsten et al. 2007). The 
decline in Atlantic salmon production since 1980 
may be also related to climate change with warmer 
water (Friedland et al. 2000, 2005) and decreased 
food abundance at moderate latitudes (Beaugrand 
and Reid 2003; Kallio-Nyberg et al. 2006). With 

warmer climate, the annual growth rate of Atlan-
tic salmon in freshwater has increased with reduced 
age and size at smolting as a consequence (Jonsson 
et al. 2005). Small fish are generally more vulner-
able to predation at sea than larger conspecifics 
(Sundström et al. 2007). The abundances of some 
crustaceans in the northeast Atlantic have decreased 
since the 1980s, possibly with trophic effects medi-
ated through the food chain, resulting in reduced 
marine salmon production (Helle and Pennington 
1999; Beaugrand and Reid 2003). At least part of 
the Atlantic salmon population appears to feed far-
ther north and in colder water than they did recent-
ly, resulting in slower growth (Jonsson and Jonsson 
2004b). Fishing also reduces stock abundances, but 
it appears not to have contributed significantly to 
the recent stock decline in Atlantic salmon (Demp-
son et al. 2004). At present, the abundance of wild 
Atlantic salmon is low, and stock enhancements are 
very popular (Potter and Crozier 2000; Klemetsen 
et al. 2003). In the Pacific, coho salmon Onco-
rhynchus kisutch and Chinook salmon O. tshaw-
ytscha have undergone parallel decreases during the 
same period, probably for some of the same or simi-
lar reasons as Atlantic salmon (Noakes et al. 2000; 
Mote et al. 2003; Beamish et al. 2004b).

Here, we review common methods for restor-
ing, rehabilitating, and enhancing Atlantic salmon 
populations and habitats. In particular, we focus on 
supportive breeding and effects of fish releases. Dur-
ing a long period, this has been the chief method for 
augmenting Atlantic salmon stocks. Furthermore, 
we discuss impacts of released hatchery salmon on 
wild populations and reasons why the success of 
hatchery fish often deviates from that of wild con-
specifics. Then, we review possibilities for restoring 
and improving the Atlantic salmon habitat by vari-
ous methods. We sum up by discussing the trade-off 
between restoring or stocking rivers and how adap-
tive management can be useful in this context and 
present some important research directions.

Population Restoration and  
Enhancement

Supportive Breeding

Supportive breeding involves the gathering of gam-
etes artificially stripped and fertilized. The resulting 
progeny are reared in hatcheries and released at vari-



3salmon enhancement

Table 1.—Effects of released hatchery-reared fish on wild populations.

Classes of interactions Responses Sources

Ecological competition Parr emigration from river stretches McMichael et al. 1999, 2000; 
  at high fish densities.  McGinnity et al. 2003; Weber and  
   Fausch 2003
 Parr mortality at high fish densities. Nickelson et al. 1986; Vincent 1987;  
   Nielsen 1994; McGinnety et al.   
   1997, 2003
 Reduced growth at moderate fish  Bohlin et al. 2002; Imre et al. 2005
  densities. 

Genetic interbreeding Reduced reproductive success,  Fleming et al. 1996, 1997, 2000;
  offspring survival and production.  McGinnity et al. 1997, 2003, 2004

Spreading of diseases and  Furunculosis (Aeromonas Johnsen and Jensen 1994;  Glover et al. 
 parasites  salmonicida).  2006

 Gyrodactylosis (Gyrodactylus salaries).  Johnsen and Jensen 1994; Bakke and  
   Harris 1998; Peeler et al. 2006.
 Salmon lice (Lepeophtheirus salmonis  McVicar 2004; Heuch et al. 2005;
  and Caligus spp.).  Hvidsten et al. 2007
 Proliferative kidney disease  Tops et al. 2006
  (Tetracatculoides bryosalmonae) 

ous life stages (i.e., eggs, fry, older parr, smolts, or 
postsmolts). Releases of eggs or unfed fry (alevins) 
are often used where environmental conditions dur-
ing spawning limit recruitment. If nursery areas 
limit population size, such as in many rivers regulat-
ed for hydropower purposes, releases of older juve-
niles may be more suitable. Economic costs of these 
release practices vary directly with the length of the 
hatchery rearing required. However, since juvenile 
survival in freshwater increases with the length of 
the hatchery rearing, this may at least partly com-
pensate for the additional rearing costs.

Hatcheries are important tools in the supple-
mentation and enhancement of yields for fisheries. 
Sea ranching operations, involving the release of 
hatchery juveniles, which return to the point of re-
lease as adults, are used to support recreational and 
professional fisheries. Supportive breeding is used in 
many rivers regulated for hydropower production 
where dams isolate the fish from upstream spawning 
grounds or water is channeled away from the river. 
Hatchery methods and technology have been much 
improved during recent years in parallel with the 
growth of the salmon farming industry, and massive 
development of hatchery programs for the above 
purposes has resulted in Atlantic salmon becoming 

one of the most intensely, artificially supplemented 
organisms in the world.

Why Are Fish Released?

There are periods in the life cycle of salmon with 
marked reductions in abundance because of popu-
lation bottlenecks. Fish are released to escape the 
effect of such bottlenecks. Positive effects of stock-
ing can be achieved if natural reproduction in 
the river is below its carrying capacity, if Atlantic 
salmon are released in habitats above the natural 
salmon producing stretches of rivers or in rivers 
where the spawning but not the juvenile rearing 
habitat is degraded.

Periods of high mortality occur when there 
is a marked ontogenetic shift in diet or habitat. 
Examples of such changes in diet are yolk to first 
feeding on small drifting invertebrates and then a 
diet change from invertebrates to fish. Examples of 
habitat change with fish age are open water in riffles 
to deeper pools in streams, pools in tributaries to 
the larger parent river, river to estuary, estuary to 
ocean, ocean to freshwater of the parent river, and 
river to spawning ground in the natal stream (Elliott 
2001).
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The resource limitation will affect the life stage 
most dependent on the resource, and a population 
bottleneck will occur. The chief bottlenecks occur in 
the early life stages such as the times of first feeding 
and smolting (Gibson 1993), although there may 
sometimes be population regulation later in life as 
well (Weatherley and Gill 1987; Shuter 1990). The 
bottlenecks may affect released hatchery fish as well 
as the local population. According to Sægrov et al. 
(2001), water discharge is a major factor influenc-
ing the carrying capacity of Atlantic salmonid parr. 
Based on studies from 11 rivers in western Norway, 
they found that the carrying capacity was inversely 
related to the natural logarithm of the water dis-
charge between 2 and 70 m3/s. Factors associated 
with high discharge constrain the parr production, 
especially during early summer when high water ve-
locity restricts the area of available habitat.

Although the carrying capacity for salmon parr 
in a river changes from year to year, rivers can be 
characterized by an average carrying capacity with 
fluctuations around this average. The carrying ca-
pacity is largely determined by the variations in the 
physical and chemical conditions, the frequency 
of extreme events such as droughts and spates, the 
availability of food, and the density of other fish 
species and the density of different life stages of the 
same species (Elliott 2001). Thus, carrying capacity 
reflects the effect of all the environmental variables 
and density-dependent factors and sets the long-
term maximum level of population density. As the 
population size approaches the carrying capacity 
of the area, emigration and mortality will increase 
(Einum and Nislow 2005). After that regulatory 
phase, mortality is influenced mainly by density-
independent factors (Jonsson et al. 1998; Milner et 
al. 2003; Su et al. 2004), although exceptions ex-
ist where density-dependent mortality occurs at a 
later stage (Unwin 1997; Elliott and Hurley 1998). 
Thus, salmon rivers can be stocked to fill the avail-

able niches for salmon, and populations can be en-
hanced by releasing fish after the main periods of 
population regulation.

Salmon Stocking

Egg Planting

Salmon eggs (embryos) are placed in incubating 
boxes buried in the gravel bed of rivers or freely in 
the bottom substratum, imitating a natural salmon 
redd (Barlaup and Moen 2001; Johnson 2004). 
Newly fertilized eggs and eyed eggs are the two de-
velopmental stages usually used. (1) Newly fertil-
ized eggs (green eggs) are planted between 24 and 
48 h after the fertilization and water hardening. 
After that (but before the eye stage), the eggs are 
very sensitive to handling stress and easily killed 
if moved. (2) Eyed eggs are robust and tolerate 
substantial handling and are often used for plant-
ing (Wagner et al. 2006). The survival of planted 
eggs is variable (Table 2), and there is no system-
atic difference in survival between eggs planted in 
boxes or placed directly in the gravel substratum or 
whether they are buried as green or eyed eggs. The 
survival from fertilization to hatching is similar for 
the two methods (Kelly-Quinn et al. 1993). How-
ever, planting of eyed eggs is often preferred since 
this allows for proper veterinary health control of 
the spawners before the eggs are planted. Further-
more, when using eyed eggs, there is a less strict 
time constraint on the planting. Since newly fertil-
ized eggs are very sensitive to movement after 48 
h, movements of the substratum during freshets or 
spates may kill the eggs.

When eggs are planted directly into the gravel 
substratum, they are usually placed in areas where 
the salmon spawn. The selection of the site is critical 
to the survival of the eggs. Preferred spawning areas 
have variable particle size, and the nests have a few 

Table 2.—Survival (%) of various developmental stages of hatchery-reared Atlantic salmon.

Stocked stage Survival to Survival % References 

Eggs hatching 0–100 Reviewed in Barlaup and Moen 2001
Eggs emergence 3.3–89 Reviewed in Barlaup and Moen 2001
Unfed fry smolts 0.2–15 Rosseland 1975; reviewed in  Fjellheim and Johnsen 2001
Fry adults 0.7–5.9 Berg 1969; Hansen 1991
Smolts adults 0–11.6 Reviewed in Finstad and Jonsson 2001
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large stones in the centre of the egg pocket. These 
stones stabilize the redd and give a sheltered environ-
ment for the eggs. Usually, Atlantic salmon spawn 
between 500 and 1,000 eggs in each nest (Fleming 
1996). The median particle size of the gravel substra-
tum where salmon spawn is about 10% of their body 
length (Kondolf et al. 1993), and the eggs are often 
buried at 10–30 cm depth in the substratum, the 
deeper the larger the fish is (DeVries 1997). When 
mimicking natural redds, the egg pocket is covered 
by gravel washed free of fine sediment to allow proper 
oxygenation of the eggs. The survival of the eggs de-
pends on the permeability of the gravel (Kondou et 
al. 2001), and there is negative correlation between 
the dissolved oxygen concentration and the mortality 
rate of the eggs (Malcolm et al. 2003). Furthermore, 
embryos developing at low dissolved oxygen concen-
trations are smaller at hatching than those develop-
ing under more favorable conditions (Youngson et al. 
2004).

More commonly than planting eggs in artifi-
cial redds, they are planted in boxes or trays bur-
ied in the gravel substratum. Common devices are 
the Whitlock-Vibert box (Vibert 1949; Whitlock 
1978), various types of perforated plastic boxes 
(Harris 1973; Scrivener 1988; Rubin 1995), and 
plastic trays (Raddum and Fjellheim 1995; Don-
aghy and Verspoor 2000). Common problems are a 
too high egg density in the boxes and that the eggs 
cluster together and become susceptible to bacterial 
and fungal infections, oxygen deficiencies, and sedi-
mentation of fine-particulate material (Harshberger 
and Porter 1979; Chapman 1988; Scrivener 1988; 
Tabachek et al. 1993).

Under favorable conditions and properly done, 
the hatching success of planted eggs exceeds 90% 
(Humpesch 1985; Kelly-Quinn et al. 1993). A key to 
success is to provide suitable conditions such as prop-
er gravel composition, burial depth, number of eggs 
per pocket, and hydrological conditions (Barlaup and 
Moen 2001). In most cases, egg plantings are more 
cost-effective than rearing and releasing hatchery fry, 
parr, or smolts. On the other hand, the survival is 
higher if the fish are released at a more developed 
stage (Coghlan and Ringler 2004; Johnson 2004).

Fry and Parr Stocking

Stocking of young salmon in rivers and lakes is a 
useful method if the habitat is spawning-site limited 

(Hyatt et al. 2005). Cultivation of Atlantic salmon 
commenced with the building of the first hatcher-
ies in the 1850s. Initially, the fish were stocked as 
alevins and small fry, but older fish were released 
as the rearing technique improved. The stocking 
efforts were further stimulated by declining popu-
lations due to regulations of rivers for hydropower 
production and the continued acidification of riv-
ers in northern countries, which started about 1875 
(Hesthagen and Hansen 1991). River-owners’ orga-
nizations, fishing societies, and management agen-
cies ran hatcheries to enhance the river production 
and yield for fisheries, for conservation purposes 
to save populations at risk of extinction, or to re- 
establish populations that had been eradicated (Jon-
sson et al. 1999; Fleming and Peterson 2001). Of-
ten, the results of such releases were not evaluated, 
and most of the evaluations reported tend to be 
among the more successful ones.

The published results of fry and parr stocking 
vary. Particularly high survival of unfed Atlantic 
salmon fry was reported from releases in a tributary 
to the River Sandvikselva, south Norway (Rosseland 
1975). There was no anadromous fish present prior 
to the release. A stocking density of two unfed fry 
per square meter gave about 0.3 smolt/m2 (Table 
1). This was a very productive stream, and a simi-
lar stocking density gave less than 8% of this when 
tested in tributaries of the River Vefsna, northern 
Norway (Johnsen et al. 1997b). In the latter case, 
the survival from smolts to returning adults was 
estimated at 2%. Later releases gave even poorer 
survival with 0.85% as the mean for a subsequent 
6-year release period (Johnsen et al. 1997a).

There are also examples of parr releases giving 
excellent survival to adults. Hansen (1991) reported 
2.3% survival to returning adults of 14 000 one-
summer-old parr released in 1983. The fish were lib-
erated above the natural Atlantic salmon producing 
area of the River Drammen, south Norway. When 
repeating the experiment in 1986, the survival of 50 
000 one-summer-old parr released in the same area 
was 0.7%. The lower yield of the repeated release 
may be because the food base was exploited by the 
earlier release of parr or that the carrying capacity 
of the freshwater habitat was surpassed because too 
many fish were released. Releases of Atlantic salmon 
in rivers appear particularly successful if there is no 
other fish species present (Fjellheim and Johnsen 
2001), but even with the presence of nonanadro-
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mous populations of salmonids such as brook char 
Salvelinus fontinalis, brown trout S. trutta, and rain-
bow trout O. mykiss, the parr survival of Atlantic 
salmon can be high (MacCrimmon 1954; Egg-
lishaw and Shackley 1980; Kennedy and Strange 
1986; Whalen and LaBar 1998; Jokikokko 1999; 
Jutila et al. 2003).

An example of an unfortunate result is the parr 
releases from the West-Norwegian River Teigdal-
selva, a tributary to the River Vosso (Fjellheim and 
Johnsen 2001). In total, 70,000 1-year-old parr 
were released giving almost no smolts. In this river, 
a large part of the water was directed to a hydropow-
er station outside the catchment area. The carrying 
capacity for Atlantic salmon smolts had obviously 
decreased dramatically as a result of the decreased 
flow.

The success of the releases is influenced by the 
quality, size, and density of the stocked fish and 
time and place of stocking (Connor et al. 2004; 
Saltveit 2006). Jokikokko (1999) reported that 
both point and scatter stockings are suitable meth-
ods for supplementing Atlantic salmon parr in riv-
ers. Letcher and Terrick (2001) reported that a wide 
range of developmental stages of Atlantic salmon 
fry will survive equally well and grow to a similar 
size when released in a natural system. On the other 
hand, even a small difference in introduction site 
and time can influence the migratory behavior of 
the fish (Pirhonen et al. 2003) and have long-term 
effects on body size, survival, and life history ex-
pressions (Letcher et al. 2004). Jokikokko and Jutila 
(2004) found that stocking of 1-year-old parr was 
economically more cost-effective than stocking of 
one-summer-old parr when restoring endangered 
stocks. A less cost-effective way of enhancement is 
the release of 2-year-old parr (Salminen et al. 2007). 
Large size at release has a positive effect on survival 
as also reported for masu salmon O. masou (Miya-
koshi et al. 2003), but the economic cost of rearing 
one extra year is high. Therefore, there must be a 
good reason for an extra year of parr rearing before 
releasing the fish, such as avoidance of an effective 
local parr predator.

The release site influences the recapture rate. In 
some cases, stockings of Atlantic salmon parr in lakes 
have been very successful (Berg 1969; Pedley and 
Jones 1978; Pepper et al. 1992). However, the flow 
through of many lakes is small, and Hansen (1987) 
reported that one-summer-old parr released in Lake 

Storevatnet of the River Imsa, southwest Norway 
moved downstream over an extended period, com-
pared with wild smolts produced in the downstream 
river. He attributed this to the low flow-through 
making it difficult for the fish to find the lake outlet. 
It is also possible that the River Imsa salmon is a river 
population not adapted to navigate through lakes. 
The outlet river is their original habitat to which they 
have been adapted through several thousand years. 
Further research is needed to establish whether dif-
ficulties in finding the lake outlet are an attribute of 
the habitat or a population-specific adaptation found 
in some Atlantic salmon populations.

Removing broodstock from rivers for hatchery 
rearing and release from an already depleted spawn-
ing stock may result in even further population 
decline (Saltveit 1998). In spite of extensive stock-
ing of parr in the River Suldalslågen, southwest 
Norway, there has been a steady decline of Atlantic 
salmon in the river, where a large part of the water is 
channeled from the main river to the sea. Although 
about 50% of the smolts that leave the river are of 
stocked origin, most returning adults are naturally 
produced. In spite of this, broodstock was taken 
from the reduced number of returnees, leaving even 
fewer fish for reproduction. On this basis, the stock-
ing program was advised to be discontinued. Thus, 
the results in various stocking programs vary, and 
poor results are reported in inferior habitats. There 
is little reason for stocking salmon at densities way 
above the carrying capacity of a system (Brännäs et 
al. 2004) because the density-dependent response is 
reduced parr survival and growth of the local fish 
(Imre et al. 2005). To enhance depleted popula-
tions, one may sample the broodstock in an abun-
dant population nearby where the environmental 
conditions are similar, as the removing of spawners 
can be detrimental to the stock. Natural spawning is 
superior to fry or parr stocking in rivers with intact 
breeding grounds, and the stocking success is gener-
ally low in rivers where the density of naturally bred 
conspecifics is high (Crozier et al. 1997; Verspoor 
and Garcia de Leaniz 1997; Mowbray and Locke 
1998).

Smolt Release

The productivity and size of the freshwater habitat 
constrain the sizes of Atlantic salmon populations 
(Jonsson et al. 1998), and the release of hatchery-
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reared smolts have been used to augment Atlantic 
salmon populations since the first part of the 20th 
century. Smolts have been released to compensate 
for habitat loss due to dam and impoundment 
building of streams and use of water for hydropower 
production. However, if the habitat is intact, the re-
lease of 1-year-old parr appears more cost effective 
than smolt releases (Jokikokko et al. 2006).

Hatchery smolts start their seaward migration 
immediately after release (Hansen and Jonsson 1985; 
Jonsson and Fleming 1993), and many return to the 
place of release when sexually mature (Hansen et 
al. 1993). To enhance the spawning population of a 
river, the smolts should be released in the river. Fish 
released in river estuaries stray more to other rivers 
and are delayed in their upstream spawning migra-
tion compared with smolts released higher upstream 
(Jonsson et al. 1994; Insulander and Ragnarsson 
2001). The smolts should be released in spring, at 
the time of seaward migration for wild smolts in the 
same or similar, neighboring rivers. Smolts released 
at that time survive better and stray less frequently 
than fish released at other times of the year (Hansen 
and Jonsson 1989a, 1991a).

The survival of released hatchery salmon is of-
ten low (Table 3), usually less than half of that of 
wild smolts (Jonsson et al. 1991, 2003b; Jutila et 
al. 2003). Commonly, the recaptures of the adults 
are in the range of 0.5–3.0% (Finstad and Jonsson 
2001), although recapture rates above 11% have 
been observed (Hansen and Jonsson 1990; Hansen 
et al. 1997). According to Moksness et al. (1998), 
the recapture rates should be above 10% to be eco-
nomically profitable in sea ranching operations, 
which is only rarely obtained (Finstad and Jons-
son 2001). The reduced survival of hatchery smolts 
may be partly caused by the artificial rearing condi-
tions resulting in decreased smolt quality and poor 
handling and release procedures. Furthermore, the 
released fish may not be genetically adapted to the 
system of release or have a too small genetic vari-
ability (Ayllon et al. 2004; McGinnity et al. 2004; 
Garcia de Leaniz et al. 2007).

The yields of the releases differ depending on 
smolt size and age. Hansen and Jonsson (1989b) 
reported that 2-year-old smolts gave higher yields 
than 1 year olds. The yield of the 2 year olds varied 
between 125 and 1,050 kg/1,000 smolts released. A 
similar difference caused by smolt age was reported 
from smolt releases in southern Finland (Salminen 

et al. 2007). On the other hand, it is cheaper to 
produce 1- than 2-year-old smolts, which can make 
it economically more profitable to produce 1- than 
2-year-old smolts as recently found in Norway (Jon-
sson et al. 2003b). Among similar-aged fish, large 
individuals appear to survive better than smaller 
ones as reported for masu salmon in Japan (Miya-
koshi et al. 2003) and pink salmon O. gorbuscha in 
Alaska (Moss et al. 2005).

A large number of experiments have been per-
formed to increase the survival of released hatchery 
smolts, and effects of the rearing and release meth-
ods have been tested (Finstad and Jonsson 2001). 
For instance, handling, transport, and anesthesia 
stress anadromous salmonids (Nikinmaa et al. 1983; 
Hansen and Jonsson 1988; Barton 2000), and 
stress-related cortisol surges can suppress the immu-
nological capacity (Fries 1986; Iversen et al. 1998) 
and migratory activity (Specker and Schreck 1980). 
But even when handling and transport are kept at 
a minimum and no hatchery smolt is anesthetized 
within 2 weeks of release (Pickering et al. 1982), the 
survival rate of hatchery reared smolts is between 
one and two times lower than that of comparable 
groups of wild smolts (Jonsson et al. 2003b).

Time and place of release have been optimized 
through experimental releases during the 1980s and 
1990s (Hansen and Jonsson 1986, 1989a, 1991a; 
Hansen et al. 1989; Jonsson et al. 1994). Experi-
ments have been performed to adapt the parr to 
natural food items or predator training before re-
lease, but none of these have so far been success-
ful in improving the sea survival substantially. In-
creased water level during the emigration period 
has a positive effect on the smolt survival (Hvidsten 
and Hansen 1988). Futhermore, physical exercise of 
the parr has proven to be positive for survival and 
growth in hatcheries (Jørgensen and Jobling 1993; 
Davidson 1997). So far, however, exercised Atlantic 
salmon have not significantly improved return rates 
to the river of release, although exercised fish strayed 
less to other rivers than unexercised fish (Skilbrei 
and Holm 1998).

Hatcheries tend to produce elevated levels of 
sexually mature male parr, which more often be-
come freshwater resident than what immature parr 
do (Hansen et al. 1989). To increase their emigra-
tion rates to the same levels as those of immature 
smolts, their high steroid concentration can be de-
creased either through gonadal stripping or elevated 
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Table 3.—Changes occurring in hatcheries reducing the performance of released hatchery fish in nature.

Changes in Changed character Sources

Morphology Body form and size Taylor 1986; Swain et al. 1991; Fleming et al. 1994; Fleming
   and Einum 1997; Fiske et al. 2005; Von Cramon-Taubadel et
   al. 2005
 Distored jaws  Fleming et al. 1994
 Fin damage Höglund et al. 1997; Lellis and Barrows 1997; Ellis et al. 2002;
   Latremouille 2003 
 Scale loss MacLean et al. 2000; Lacroix and Knox 2005
 Adiposy Rowe et al. 1991; Silverstein et al. 1999

Physiology and Heart abnormity Poppe et al. 2003; Seierstad et al. 2005
 anadromy Brain  Marchetti and Nevitt 2003; Lema et al. 2005
 Metabolic rate Dunmall and Schreer 2003; Claireaux et al. 2005
 Smolting Poole et al. 2003
 Hormone Youngson and Webb 1992; McCormick et al. 2003

Life history Growth rate Jonsson et al. 1991a; Jonsson and Fleming 1993; Kistow 2004
 characters Survival Piggins and Mills 1985; Jonsson and Fleming 1993; Jonsson et
   al. 1991a, 2003b; Kostow 2004; Saloniemi et al. 2004
 Smolt age Økland et al. 1993; Yamamoto and Morita 2002; Jonsson et al.  
   2003b; Duston et al. 2005 
 Age at maturity Jonsson et al. 2003b; Kostow 2004; Patterson et al. 2004
 Reproductive output Jonsson et al. 1996; Tamate and Maekawa 2000; Fleming et al.  
   2003; Quinn et al. 2004 
 Longevity Kostow 2004

Behaviour Time of river ascent  Jonsson et al. 1990b, 1994; Fleming et al. 1997; Skilbrei and  
   Holm 1998
 Risk taking Berejikian 1995; Fleming et al. 2002; Sundström et al. 2004
 Feeding behavior  Reiriz et al. 1998; Reinhardt 2001; Sundström and Johnsson   
   2001; Brown et al. 2003a, 2003b
 Aggressive behavior Einum and Fleming 1997; Rhodes and Quinn 1998; Riley et 
   al. 2005; Sundström et al. 2003; Yamamoto and Reinhardt  
   2003
 River movement Jonsson et al. 1990a; Økland et al. 1995
 River stay Jonsson et al. 1990a
 Straying to foreign Hansen et al. 1993; Jonsson et al. 2003a
  rivers
 Predator recognition  Brown and Smith 1998; Mirza and Chivers 2000; Berejikian et  
   al. 2003b; Vilhunen et al. 2005
 Refuge use Griffiths and Armstrong 2002; Orpwood et al. 2004
 Swimming activity McDonald et al. 1998; Claireaux et al. 2005
 Spawning time Berejikian et al. 2003a
 Courting and  Fleming et al. 1996, 1997
  spawning behavior

water temperature during the winter after matura-
tion (Berglund et al. 1991). Vaccines and chemical 
protection against contagious diseases and parasites 
such as sea lice have a positive effect on the survival 

of hatchery smolts in nature (Hvidsten et al. 2007). 
But even sea lice-protected smolts exhibit inferior 
survival to adulthood. Thus, improved handling 
and release strategies can increase the survival of re-
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leased hatchery smolts but have so far not brought 
the survival rate up to a satisfactory level (Jonsson 
et al. 2003b).

Postsmolt Release

Survival of released smolts can be increased by in-
creasing the size of the fish at release (Salminen et 
al. 1995), and the mortality may be particularly 
high due to predation during the first weeks at sea 
(Hvidsten and Møkkelgjerd 1987; Salminen et 
al. 1995; Dieperink et al. 2002). To avoid coastal 
smolt predators, postsmolts have also been released 
directly in the ocean after transportation in well-
boats (Gunnerød et al. 1988; Heggberget et al. 
1991). Furthermore, postsmolts have been retained 
in sea pens a few weeks during the first summer af-
ter smolting and then released. Both methods have 
given significantly higher recapture rates compared 
with fish released in rivers at the time of smolting 
(Eriksson and Eriksson 1991). A similar effect has 
been reported from coho and Chinook salmon, al-
though the results vary among stocks (Linley 2001; 
Thrower and Joyce 2006). However, coastal released 
Atlantic salmon have exhibited a temporal delay in 
river ascent relative to the river-released fish and 
exhibited higher straying rates to other rivers com-
pared with river-released fish (Hansen and Jonsson 
1991a; Hansen et al. 1993; Jonsson et al. 1994).

Effects of Hatchery Salmon on the 
Local Wild Fish

Juvenile Competition

The results from experimental tests of feeding com-
petition between wild and hatchery Atlantic salmon 
vary. Einum and Fleming (1997) reported that parr 
of hatchery Atlantic salmon dominated wild con-
specifics in one-on-one challenges, with hybrids ex-
hibiting an intermediate success. They related this to 
higher aggressiveness in hatchery than wild fish. A 
similar dominance of hatchery fish was reported by 
Rhodes and Quinn (1998) for coho salmon. Bere-
jikian et al. (1999) found that juvenile coho salmon 
with cultured mothers won dominance challenges 
in a laboratory flume more frequently than parental 
half-sibs with wild mothers, suggesting that domi-
nance may be a maternal effect. Riley et al. (2005), 
on the other hand, found no evidence that rearing 

environments caused higher aggression in cultured 
than in wild steelhead (anadromous rainbow trout) 
fry.

The higher aggressiveness observed in some 
hatchery populations can be modified by the envi-
ronment. Fleming and Einum (1997) reported that 
hatchery parr were more aggressive in tank envi-
ronments, contrasting the dominance of wild juve-
niles in stream-like environments. In brown trout, 
Höjsjö et al. (2004) found that the growth rate of 
dominant individuals relative to subordinates de-
creased with increased habitat complexity lending 
support to the hypothesis that habitat complexity 
favors wild salmonids in competition with hatchery 
reared conspecifics.

Prior residence influences the outcome of 
competition between wild and hatchery-reared fish 
(Reinhardt et al. 2001). In Atlantic salmon, it in-
fluences which individuals obtain territories (Cutts 
et al. 1999). In brown trout territory, owners are 
more likely to win contests, whether the fish are of 
wild or cultured origin (Sundström et al. 2003). A 
prior residence of 4 d motivated a stronger defense 
than a 2-d resident (Johnsson and Forser 2002). 
Furthermore, levels of aggression in juvenile At-
lantic salmon are lowered by the presence of larger 
individuals (Adams et al. 2000; Peery et al. 2004). 
Thus, although hatchery parr may win feeding con-
tests in tanks with slowly flowing water, the domi-
nance can be reversed if intrinsic or extrinsic condi-
tions change. Competition may result in increased 
emigration and mortality and decreased individual 
growth through density dependent mechanisms.

Displacement and Mortality in Freshwater

In rivers, hatchery parr may be displaced by wild 
conspecifics and vice versa, as found in experiments 
with rainbow trout (Table 3). Whether or not cul-
tured fish dominate over wild conspecifics vary 
with the genetic background of the fish (Weber and 
Fausch 2003). McGinnity et al. (1997) reported 
that cultured Atlantic salmon fry outgrew and part-
ly replaced wild conspecifics. The possible displace-
ment may be linked to body size and density of fish. 
Weiss and Schmutz (1999) observed movement of 
resident brown trout from stocked stream sections. 
There are also examples where no effect of hatchery 
parr has been observed. For instance, Orpwood et 
al. (2004) reported that the ability of wild Atlantic 
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salmon parr to find shelter in winter was unaffected 
by the presence of hatchery parr, even when the 
wild fish were outnumbered by four to one. Nickel-
son et al. (1986) found that the density of wild coho 
salmon juveniles was lower in streams stocked with 
hatchery fish than in unstocked streams, indicating 
that cultured fish replaced wild fish. The total den-
sity of juveniles had increased 1 year after stocking, 
but there was decreased production of juveniles in 
the next generation.

Weber and Fausch (2003) reported that at high 
density, hatchery rainbow trout were able to dis-
place wild conspecifics from favorable stream posi-
tions when the hatchery fish were larger. At normal 
density, however, no consistent effect on emigration 
was found. In any case, it may be wise to delay the 
release of hatchery fish until after smolting of the 
local fish in the river to reduce potential interactions 
in freshwater.

There is little evidence of mortality effects of 
hatchery-reared Atlantic salmon parr on wild con-
specifics, but experimental evidence from a num-
ber of other salmonid species indicates that den-
sity dependent mortality can result from releases 
of hatchery parr. Nielsen (1994) reported reduced 
production of wild coho salmon after hatchery coho 
salmon were stocked in a Californian river. Vin-
cent (1987) found that densities of wild rainbow 
trout and brown trout increased after the stock-
ing of adult hatchery rainbow trout ceased in two 
Montana streams, and Petrosky and Bjornn (1988) 
found that the mortality of wild rainbow and cut-
throat trout O. clarkii increased at high, but not 
low stocking densities. In competition experiments 
with masu salmon in river enclosures, the hatchery 
fish survived in larger numbers than wild fish (Re-
inhardt et al. 2001). The mortality effect of released 
hatchery fish may be similar to that of adding wild 
fish, as reported by Bohlin et al. (2002) who tested 
effects of competition from hatchery on wild brown 
trout. Thus, in freshwater, density-dependent effects 
of cultured fish appear common among salmonid 
species and is probably also taking place in Atlantic 
salmon.

Releases of hatchery salmon may increase the 
mortality of competing species. Levin and Williams 
(2002) reported that the survival of wild Chinook 
salmon was negatively associated with releases of 
hatchery-reared steelhead in the Snake River, west-
ern USA, and similarly, Atlantic salmon releases in-

fluence the carrying capacity for brown trout as a 
result of competitive interactions (Heggenes et al. 
1999; Harwood et al. 2001; Armstrong et al. 2003; 
Höjsjö et al. 2005). However, the effect of inter-
specific competition will probably be smaller than 
that of intraspecific competition between hatchery 
and wild Atlantic salmon. Although the ecological 
requirements of various species may be similar, they 
are less similar than those of hatchery and wild con-
specifics (Harwood et al. 2002).

Growth

Density can influence the growth rate of salmonids 
(Brännäs et al. 2004). While density dependent dis-
placement occurs at high population densities, den-
sity-dependent growth reduction can be noticeable 
even at low population densities (growth depensa-
tion) (Jenkins et al. 1999; Lobon-Cervia 2005). 
In addition to Atlantic salmon (Imre et al. 2005), 
growth depensation caused by released hatchery 
fish has been observed in brown trout and rain-
bow trout, and it probably occurs among stream-
living salmonids in general (McMichael et al. 1997, 
2000; Weiss and Schmutz 1999; Sundström et al. 
2004). Bohlin et al. (2002) found that the addition 
of hatchery trout had a similar effect on growth 
rate of wild brown trout as increasing the density 
of wild conspecifics. For Chinook salmon, Weber 
and Fausch (2005) reported an even stronger nega-
tive effect on wild fish growth by adding hatchery 
than adding wild fish to the same density. In addi-
tion, releases of hatchery fish may influence growth 
rate of competing species, as found in experiments 
with brown trout and cutthroat trout (Shemai et 
al. 2007). But the negative interspecific effect on 
growth rate may be less than the intraspecific effect. 
An indirect consequence of the growth depensation 
may be decreased survival rate and impacts on other 
life history traits of the fish (Beamish et al. 2004a; 
Jonsson and Jonsson 2004b).

Other Life History Traits

The presence of hatchery salmon can contribute to 
the decline in adult body size of the fish in locali-
ties where they are released due to feeding competi-
tion. Hatchery practices together with fast juvenile 
growth in freshwater often results in younger age at 
maturity, as a phenotypic response (Salminen 1997; 
Quinn et al. 2001; Bates and McKeown 2003; Vøll-
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estad et al. 2004; Scheuerell 2005). Furthermore, 
selective broodstock selection may alter the age at 
maturity of the fish as found for Chinook salmon 
(Unwin and Glova 1997).

With a decrease in juvenile growth rate and 
adult body size, egg size and fecundity may be al-
tered (Unwin and Glova 1997). In Atlantic salmon, 
fast juvenile growth rate in freshwater, such as in 
hatcheries, reduces egg size and increases the fecun-
dity of the fish as a plastic response of the pheno-
type, whereas the effect on egg size of growth rate 
variation at sea is minimal (Jonsson et al. 1996), re-
lationships that also hold for masu salmon (Tamate 
and Maekawa 2000). Variation in growth rate, adult 
size, age at maturity, egg size, and fecundity influ-
ence competitive ability, reproductive success, and 
fitness of the fish with effects on biomass and pro-
duction of fish in nature (Wertheimer et al. 2004).

Sea Survival

Released hatchery salmon survive less well than 
wild salmon at sea. In the Burrishoole, Ireland, 
smolt-to-adult survival of one sea-winter Atlantic 
salmon averaged 8% (2.9–12.6%) for wild fish and 
2% (0.4–4.4%) for sea-ranched fish (Piggins and 
Mills 1985). In the River Imsa, the mean sea sur-
vival during 14 years of study was 8.9% for wild 
and 3.3% and 2.9% for cultured fish released as 
1- and 2- year-old smolts, respectively (Jonsson et 
al. 2003b). In the Baltic Sea, the smolt to adult sur-
vival was 4.5 times higher in wild than in released 
hatchery Atlantic salmon (Saloniemi et al. 2004). 
It was reported that the difference in sea survival 
was more pronounced in low-survival years than in 
high-survival years. In good years, the larger size of 
hatchery smolts could compensate for their infe-
rior performance, compared with wild smolts, but 
in poor survival years, wild smolts always exhibited 
higher survival. The estimated mean survival from 
smolts to adults of naturally produced steelhead was 
5–6%, whereas that of hatchery populations was 
approximately 1%, and total egg to adult survival 
was 0.05% for wild fish and 0.56% for cultured fish 
(Kostow 2004). The 3–5 times higher sea survival 
of wild than hatchery reared Atlantic salmon and 
steelhead trout released in rivers as smolts may be 
linked to more relaxed selection pressure in hatcher-
ies than in nature and the phenotypic divergences of 
hatchery from wild fish (Jonsson and Fleming 1993; 

Reisenbichler and Rubin 1999; Ford 2002). Also, in 
other salmonids, the survival of released hatchery 
fish can be low as reported for released hatchery-
reared anadromous brown trout in Denmark due 
to high mortality at sea (Hansen 2002; Ruzzante et 
al. 2004).

Spawning Competition and  
Reproductive Success

Returning adult hatchery Atlantic salmon enter riv-
ers to spawn later in the season, move about more, 
and stay for a shorter time in the river than wild 
fish (Jonsson et al. 1990a; Økland et al. 1995). Up-
stream migrating hatchery salmon may not be head-
ing for any particular spawning area. Many may 
move to the top of the river instead of entering the 
spawning grounds of wild fish lower downstream 
(Thorstad et al. 1998). Some released hatchery-
reared Atlantic salmon spawn in the river they en-
ter; others leave the river unspawned (Jonsson et al. 
1990a). The spawning success of hatchery salmon 
may be reduced by their late river entry (Aarestrup 
et al. 2000).

On the spawning grounds, hatchery Atlantic 
salmon have been found competitively and repro-
ductively inferior and injured more often than their 
wild counterparts (Jonsson et al. 1990a). Fleming 
et al. (1997) reported that the spawning success of 
male Atlantic salmon released as smolts was 51% 
of that of corresponding wild males from the same 
population, whereas there was no significant dif-
ference in reproductive success between wild and 
hatchery females. McGinnity et al. (2004) report-
ed an overall lifetime success from fertilized egg 
to returning adult of nonnative Atlantic salmon 
to be 35% less than that of native and conspecif-
ics released as smolts. Early survival was lower in 
offspring of hatchery than of wild fish; later, it was 
similar. Also, in other salmonids such as coho salm-
on, the reproductive success is higher for wild than 
for hatchery-produced fish (Fleming and Gross 
1992, 1993; Berejikian et al. 1997).

The release of hatchery-reared adults is not an 
effective tool to rebuild a seriously depressed popu-
lation (Carr et al. 2004). The reproductive success of 
hatchery fish, however, may increase with increasing 
time in nature. For instance, the reproductive suc-
cess of sea-ranched salmon that have lived one year 
in nature is between that of wild and farmed Atlantic 
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salmon coming directly from the net pens (Fleming 
et al. 1996, 1997). However, there is one example 
of high reproductive success of cultured fish. Dan-
newitz et al. (2004) found no significant difference 
in reproductive success between seventh-generation 
hatchery brown trout and wild-born brown trout 
in an experimental stream. Thus, hatchery fish may 
not always be an inferior competitor to wild fish on 
the spawning grounds.

The inferiority of hatchery fish is more pro-
nounced in hatchery males than females, resulting 
in cross-breeding between hatchery females and 
wild males. In brown trout, hatchery-reared males 
seem to have lower reproductive success than wild 
males as found in an experimental stream, but no 
similar effect for females was reported (Dannewitz 
et al. 2004). Experimental evidence from Atlantic 
salmon suggests that the male fitness difference oc-
curs because they arrive at the spawning grounds 
later than wild males, do not establish dominance 
hierarchies as effectively as wild males, court less, 
spawn with females in larger numbers, and par-
take in fewer spawnings, and they frequently fail to 
release sperm when the females release their eggs. 
On the spawning grounds, male hatchery Atlantic 
salmon are involved in more prolonged aggres-
sive encounters, incur greater wounding, and have 
higher mortality than wild males originating from 
the same population (Fleming et al. 1996, 1997). 
The hatchery males ascend the spawning river later 
in the season, are less able to monopolize females, 
move about more in the river, and, after spawning, 
they leave the river earlier than wild fish originating 
from the same population. Hatchery salmon also 
return to sea without having spawned more often 
than wild salmon (Jonsson et al. 1990a).

Biomass and Production

Releases of salmon are meant to increase the pro-
ductivity of habitats as found in the River Dram-
men by Hansen (1991), but hatchery production 
may decrease the productivity of the wild stock 
present. As a consequence of the spawning of hatch-
ery salmon in the River Imsa, Fleming et al. (2000) 
found a 30% reduction in production of wild At-
lantic salmon. Unwin and Glova (1997) found a 
34% reduction in the production of wild Chinook 
salmon in a New Zealand river, probably due to 
density-dependent mortality caused by released 

hatchery fish. Furthermore, Nickelson (2003) re-
ported decreased salmon production in Oregon 
coastal river basins and lakes where large numbers of 
cultured coho salmon smolts were released and rec-
ommended against such large releases in areas with 
high concentrations of wild fish. Chilcote (2003) 
maintained that removal rather than addition of 
hatchery fish may be the most effective strategy to 
improve productivity and resilience of steelhead. He 
found that populations consisting of equal numbers 
of cultured and wild fish produced 63% fewer re-
cruits per spawner than one composed entirely of 
wild fish. In cases where fish releases result in a de-
crease rather than an increase in total population 
size, this may be due to a genetic change with the 
introduction of maladaptive traits or loss of genetic 
variation (Wang and Ryman 2001; Garcia de Leaniz 
et al. 2007) or an overexploitation of the food re-
sources present with a resulting decrease in carrying 
capacity of the habitat. In some cases, there appear 
to be only minor effects of released cultured fish on 
the local wild populations, as reported by Hayes et 
al. (2004). When Goodman (2005) modeled the 
effects on natural spawning fitness in rivers where 
wild and cultured fish spawn together, he found po-
tential, but not a certainty, for erosion of natural 
spawning fitness, a finding supported in the analysis 
of Naylor et al. (2005). Thus, there are variable re-
sults from an increased to decreased total produc-
tion after releases of salmon, which are reasonable 
and depend on the environmental conditions where 
the fish are liberated. But most effects of releases of 
hatchery salmon seem negative.

Why Do Hatchery Salmon Often 
Perform Poorly in Nature?

The success of hatchery fish in nature is often low 
(e.g., Hjort and Schreck 1982; Swain et al. 1991; 
Fleming et al. 1994; Pelis and McCormick 2003; 
Kostow 2004; Von Cramon-Taubadel et al. 2005). 
Hatchery and wild conspecifics experience different 
environments before the release of the cultured fish. 
Hatchery salmon allocate more energy to protein 
growth and lipid deposition, and in association with 
this, several morphological changes occur (Fleming 
et al. 1994; Price 1999; Waples 1999). Hatchery 
tanks are space-restricted and simple; there is little 
seasonal change in environmental variables, high-
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quality food is readily available, and the fish are 
protected against predators and treated for some 
diseases. Furthermore, in hatcheries, salmon repro-
duce without having to compete for mates. On the 
other hand, hatchery fish are frequently disturbed 
by human treatment, and fish density is unnaturally 
high with the possibility of more social encounters, 
increased stress and aggression levels, and increased 
vulnerability to contageous diseases (Huntingford 
2004).

Hatchery salmon deviate from wild salmon due 
to these differences in environments. The phenotype 
is both directly (plastic) and indirectly (genetic) influ-
enced by the environment. Phenotypically plastic di-
vergences are often shaped early in life. Von Cramon-
Taubadel et al. (2005) found that the body form of 
Atlantic salmon parr grown from the eyed egg stage 
with a nonsibling group in a hatchery resembled the 
body shape of the nonsiblings more closely than the 
full siblings grown in their natal habitat. The mor-
phological differences, however, are less pronounced 
after 1 year swimming freely in the sea (Fleming et 
al. 1994). Thus, some of the phenotypic differences 
caused by the rearing conditions disappear with time 
when the divergent groups are brought together in a 
common habitat.

Hatchery rearing also influences anatomic char-
acters such as the development of the forebrain (tel-
encephalon) of salmon and trout (Lema et al. 2005). 
It is found that cultured Pacific salmonids have small-
er brains than wild conspecifics of similar size, but the 
reason is still unknown (Kihslinger and Nevitt 2006; 
Kihslinger et al. 2006). Furthermore, sensory organs 
such as the lateral system and eyes may be modi-
fied during hatchery rearing and influence the per-
formance of hatchery fish in nature (Marchetti and 
Nevitt 2003; Anras and Lagardere 2004). Further-
more, it is found that brain gene expression profiles 
in Atlantic salmon is affected by rearing environment 
such as hatchery and river, as well as between repro-
ductive tactics independent of rearing environment 
(Aubin-Horth et al. 2005).

Heart anatomy also differs between hatch-
ery and wild salmonids. The normal shape of the 
salmonid ventricle is a triangular pyramid with 
the apex pointing caudoventrally. But Poppe et al. 
(2003) found that the hearts of hatchery-reared 
Atlantic salmon and rainbow trout were rounder 
than those in their wild counterparts and that the 
angle between the ventricular axis and the axis of 

the bulbus arteriosus was more acute in wild fish. 
Fish with abnormal heart morphology have higher 
mortality rate during stress-induced situations, and 
the cardiac output, heart rate and stroke volume, 
and active metabolic rate may be smaller (Dunmall 
and Schreer 2003; Claireaux et al. 2005).

Hatchery fish may be compromised in their 
ability to undergo smolting in terms of physiological 
changes needed to ionic regulation in marine waters. 
Lower gill Na+, K+ – ATPase activity, growth hor-
mone, and plasma chloride levels of cultured than 
wild smolts was observed by Handeland et al. (2003), 
and survival on transfer to full-strength seawater at 
different temperatures indicates that wild Atlantic 
salmon smolts may tolerate the transfer better than 
cultured smolts. Handeland et al. (2003) concluded 
that the observed differences are genetic and associ-
ated with broodstock selection for rapid growth over 
several generations. On the other hand, such differ-
ences may well be phenotypic, linked to the seasonal 
development and size of the fish, as suggested by 
Ugedal et al. (1998), investigating seawater tolerance 
in cultured and wild smolts of brown trout. Hatchery 
Atlantic salmon smolts of the Irish Burrishoole stock 
had higher basal cortisol levels in April and May than 
wild smolts and did not exhibit the typical cortisol 
responses to capture stress. Similar differences were 
found in serum glucose levels, and cultured smolts 
had significantly higher concentrations of mucous 
cells in both skin and secondary gill lamellae, which 
may influence the subsequent marine survival (Poole 
et al. 2003).

Such phenotypic deviations results from (1) 
hatchery experiences, (2) developmental processes, 
and (3) physical damage incurred through hatchery 
rearing.

Hatchery Experiences

Cues sensed by fish influence behavioral traits 
(Brown et al. 2003) and differential juvenile experi-
ences between hatchery and wild Atlantic salmon are 
likely to generate differences between them (Jonsson 
et al. 1990a; Huntingford 2004; Braithwaite and 
Salvanes 2005). For instance, early river experience 
influences the timing of the river entry for spawning 
(Jonsson et al. 1994; Skilbrei and Holm 1998), risk 
taking (Sundström et al. 2004), antipredator and 
feeding behavior (Reiriz et al. 1998; Brown and La-
land 2001, 2002; Reinhardt 2001). Vilhunen et al. 
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(2005) reported that acquired predator recognition 
was socially transmitted from predator experienced 
to predator naïve conspecifics as found in experi-
ments with Arctic char Salvelinus alpinus.

When released in nature, hatchery Atlantic 
salmon enter rivers to spawn (Jonsson et al. 1990a, 
2003a; Clifford et al. 1998). However, their hom-
ing precision is less accurate than that of wild fish 
even when the two leave the river together as smolts 
(Jonsson et al. 2003a). Mean rates of straying of re-
leased hatchery versus wild Atlantic salmon of the 
River Imsa stock were estimated at 15% and 6%, 
respectively, and the more years the fish stayed away 
from the river, the larger was the straying rate. Both 
cultured and wild salmon strayed to many of the 
same rivers (ca. 80% of them drain into the fjord of 
the River Imsa within 60 km of the outlet).

Cues encountered by seaward migrating smolts 
influence the homing behavior of salmonids (Han-
sen et al. 1993; Dittman and Quinn 1996) and 
river ascent (Hansen and Jonsson 1994; Jonsson et 
al. 1994). Together, such observations indicate that 
differences in sensory stimulations between hatch-
ery and wild salmon influence subsequent perfor-
mance in nature. A more variable hatchery rearing 
environments might mitigate some of this differ-
ence between wild and hatchery salmon, as shown 
for hatchery-reared Atlantic cod Gadus morhua (Sal-
vanes and Braithwaite 2006).

Developmental Processes

Developmental processes expressed by the pheno-
type are influenced by hatchery conditions. For 
instance, egg incubation temperature affects subse-
quent growth performance of the parr. In hatcher-
ies, salmonid eggs are often incubated at elevated 
water temperature to induce early hatching and a 
prolonged first growing season. This gives the young 
fish a size advantage over similar-aged wild conspe-
cifics when liberated in nature. This size advantage 
can influence the outcome of social encounters, 
with effects on other life history characters as previ-
ously explained.

Atlantic salmon parr are often faster growing 
in hatcheries than in nature owing to higher energy 
input and/or lower energy expenditure, with conse-
quences for life history traits such as age and size at 
smolting (Økland et al. 1993), age at sexual matu-
rity (Alm 1959; Vøllestad et al. 2004), and repro-

ductive output (Jonsson et al. 1996). Fast-growing 
parr tend to smolt younger and smaller (Økland et 
al. 1993), but the size of hatchery smolts is variable 
and heavily dependent on smolt age (Jonsson et al. 
2003b). Furthermore, high growth rate of female 
salmon in freshwater is associated with a relatively 
low growth increment at sea (Einum et al. 2002), and 
low growth increment at sea is associated with early 
age and small size at sexual maturity (Nicieza and 
Braña 1993; Jonsson and Jonsson 2004b). Gonadal 
mass and energy content increase with somatic mass 
in both sexes (Jonsson and Jonsson 2003), and as a 
reaction norm in Atlantic salmon, fast-growing parr 
tend to produce more and smaller eggs when they 
mature than if they grow more slowly (Jonsson et al. 
1996; Fleming et al. 2003). In other species such as 
brown trout, coho salmon, and Chinook salmon, egg 
size and fecundity appear to be chiefly determined by 
the energy intake later in life and not flexibly depen-
dent on the early, juvenile growth rate (Jonsson and 
Jonsson 1999; Quinn et al. 2004).

Lack of exercise in hatcheries may influence the 
hormone production of Atlantic salmon. Hatchery 
smolts challenged by a high current velocity are 
more active than the unchallenged smolts, prob-
ably because of elevated thyroxin level (Youngson 
and Webb 1992) with effects on the downstream 
smolt migration (Youngson et al. 1989; Iwata et al. 
2003) and possibly the subsequent homing behav-
ior (Dittman et al. 1996; Lema and Nevitt 2004). 
The hormone level can also be elevated if the hatch-
ery smolts are retained for some time in so-called 
“imprinting ponds” with higher current velocity 
than experienced in hatcheries, before release (Mc-
Cormick et al. 2003).

There is correlation between adiposy and matu-
ration in salmonids (Rowe et al. 1991; Silverstein 
et al. 1999), and the lack of exercise in hatcheries 
influences lipid deposition, growth, swimming per-
formance, and rate of fin healing, with possible ef-
fects on subsequent reproductive performance and 
success (Jørgensen and Jobling 1993). Male Chi-
nook salmon reared in high-current velocity condi-
tions started spawning 2.4 d earlier and defended 
their access to spawning females better than males 
reared in low-velocity tanks (Berejikian et al. 2003). 
Adult Atlantic salmon reared to smolting in high-
velocity tanks enter freshwater for spawning more 
readily than those reared in a regular low-velocity 
environment (Skilbrei and Holm 1998). Patterson 
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et al. (2004) reported effects of exercise on age at 
maturity, egg deposition rate, and egg survival in 
sockeye salmon O. nerka. Nonexercised females had 
delayed maturity, had lower egg deposition rates, 
and were more likely to die prior to ovulation and 
to exhibit poorer egg survival than exercised fish and 
wild spawners. Thus, lack of physical exercise by 
hatchery fish may diminish their success in nature 
relative to that of wild fish.

Physical Damages

Damage to the rayed fins of hatchery Atlantic salm-
on parr is primarily caused by aggressive encounters 
between fish with nipping of fins (Ellis et al. 2002), 
but may also result from abrasion on rough surfaces, 
nutritional deficiencies, and secondary bacterial in-
fections (Höglund et al. 1997; Lellis and Barrows 
1997; Latremouille 2003). The damaged or dis-
torted jaws sometimes seen in hatchery salmon may 
also result from injuries in the tank environment, 
which hardly ever occur under natural conditions 
in rivers. While such damage incurred during cul-
ture can influence the performance of the fish and is 
therefore undesirable, it can be helpful when study-
ing social interactions between groups of wild and 
hatchery fish (MacLean et al. 2000).

Genetic Diversity

Atlantic salmon segregate into distinct reproductive 
groups or local populations (Verspoor et al. 2007), 
and there is evidence of adaptive variation among 
the populations of Atlantic salmon (Hansen and 
Jonsson 1991b; Nislow et al. 2004; review in Garcia 
de Leaniz et al. 2007). In the hatcheries, however, 
salmon face new selection pressures, and the diver-
gent phenotypic expression of hatchery relative to 
wild conspecifics can be influenced by natural selec-
tion in the hatchery conditions and artificial brood-
stock selection. Furthermore, hatchery populations 
may be influenced by genetic drift, inbreeding, and 
outbreeding depression.

The scale and extent of adaptive variations 
among salmon populations are poorly understood, 
but they depend probably on habitat heterogene-
ity, environmental stability, and the relative roles of 
selection and drift. As Garcia de Leaniz et al. (2007) 
maintained, maladaptation often results from phe-
notype–environment mismatch. To avoid this, one 

should act as if all populations are locally adapted. 
That means that one should minimize alterations to 
native populations and habitats to which popula-
tions may be adapted to and allow for population 
size to extend beyond the carrying capacity of the 
habitat to maintain genetic diversity and encourage 
competition and other sources of natural mortality 
required for natural or stabilizing selection.

Hatchery Selection

Population specific adaptations may be changed in 
hatcheries as artificial culture exposes fish to new se-
lecting forces (Thorpe 2004). The genotypic change 
of cultured fish from their wild origin is a response 
to changed birth and/or death rates as a consequence 
of natural selection in the hatchery environment 
(Heath et al. 2003; Obedzinski and Letcher 2004). 
For instance, hatcheries appear to select for enhanced 
aggression in natural river environments, as found 
for Atlantic salmon (Einum and Fleming 1997), 
Chinook salmon (Wessel et al. 2006), coho salmon 
(Rhodes and Quinn 1998), masu salmon (Yama-
moto and Reinhardt 2003), brown trout (Sundström 
et al. 2003), and rainbow trout (Riley et al. 2005). 
The higher aggressiveness may be linked to the high 
fish density in hatchery tanks. Glover et al. (2004) 
showed that the families of brown trout that survived 
best under conditions of abundant food were differ-
ent from those that survived best on low rations.

Broodstock Selection

Farmed salmon selectively bred over several genera-
tions for production traits such as fast growth differ 
genetically from their wild origin when they are re-
leased in nature (Weber and Fausch 2003; McLean 
et al. 2005), with for example higher production 
rates of growth hormone (Fleming et al. 2002). The 
resulting fast growth is linked to enhanced appetite 
and greater risk taking (Fleming et al. 2002) and el-
evated standard metabolic rate (Metcalfe et al. 1995; 
Cutts et al. 2002; Lahti et al. 2002). Hybrid juve-
niles are often intermediate in character expression 
between hatchery and wild juveniles (McGinnity et 
al. 1997, 2003; Fleming et al. 2000). Thus, brood-
stock selection can cause correlated and unintended 
genetic changes. Hatchery salmon transported and 
released in new areas can deviate significantly from 
the local wild fish.
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Selection for high growth rate, however, may 
reduce the aggressiveness of the fish. This was 
demonstrated in experiments with newly emerged 
brown trout fry (Hedenskog et al. 2002). Petersson 
and Järvi (2003) reported that wild juvenile brown 
trout were more aggressive than the offspring of 
sea-ranched brown trout and attacked novel objects 
sooner, a behavior that gives elevated dominance 
status (Sundström et al. 2004). Furthermore, Sund-
ström et al. (2005) observed different responses of 
cultured and wild brown trout originating from the 
same stock, which may be caused by different se-
lection regimes in the hatchery and nature (Hunt-
ingford and Adams 2005). In coho salmon, aggres-
siveness and growth rate are negatively correlated 
(Vøllestad and Quinn 2003), probably because the 
time spent on agonistic interactions reduces food 
consumption and/or increases the energy use. Thus, 
broodstock selection for production traits in hatch-
eries may counteract the selection for increased ag-
gressiveness under hatchery conditions.

Selection response may also be obtained for a 
number of other traits such as sea survival and re-
turn rate (Jonasson et al. 1997), age at sexual matu-
rity (Gjerde et al. 1994; Gjedrem 2000), disease and 
parasite resistance (Fjælestad et al. 1993; Gjøen et al. 
1997; Kolstad et al. 2005), feed efficiency (Kolstad 
et al. 2004), and low percentage of sexually mature 
male parr (Wild et al. 1994). However, many such 
changes may be undesirable when restoring salmon 
populations.

Genetic Drift, Inbreeding,  
and Outbreeding

Genetic changes of the populations should be avoided 
when restoring salmonid populations (Cross 2000), 
as this may result in increased rate of hybridization 
with related species or with endemic populations of 
the same species and give elevated rates of genetic 
drift (Wang and Ryman 2001). Furthermore, within-
population genetic diversity may be eroded by stock-
ing large numbers of genetically similar individuals 
into small populations (Yokota et al. 2003). To de-
crease such hazards, Harada et al. (1998) advised that 
one should use wild-born parents of both sexes for 
broodstocks. On the other hand, Riley et al. (2004) 
found few significant ecological effects of small-scale 
releases of hatchery coho and Chinook salmon even 
when the wild conspecifics occurred at low densities, 

indicating that genetic effects of hatchery salmon on 
wild populations are variable.

Inbreeding with loss of heterozygosity may oc-
cur in hatcheries with negative effects on individual 
and population performance when released in nature 
because of reduced adaptability and accumulation 
of genes with detrimental effects (Wang et al. 2001; 
Primmer et al. 2003; Tiira et al. 2006). Garant et al. 
(2005) reported an increased reproductive success of 
females with a higher number of mates, resulting in 
more outbred offspring. Furthermore, Ayllon et al. 
(2004) suggested that poor planting success of At-
lantic salmon introduced to streams of the Kerguelen 
Island, Antarctica was due to a too low genetic vari-
ability of the broodstock. Thus, enhanced genetic 
diversity of released hatchery fish may increase their 
reproductive success in nature.

As a management measure, new nonnative al-
leles can be introduced to populations with low ge-
netic variability (Tallmon et al. 2004; Hedrick 2005; 
Edmands 2007). On the other hand, adding new al-
leles may be detrimental to populations if it breaks 
coadapted gene complexes important for fitness 
traits in the local environment (outbreeding depres-
sion). Little is known about the effects of outbreed-
ing in salmon, but it may decrease fitness (Fleming 
et al. 2000; McGinnity et al. 2004) as in a variety of 
other species (Edmands 1999; McClelland and Na-
ish 2007). Because of this, several authors advocate 
habitat restoration, if possible, rather than supportive 
breeding when supporting threatened or endangered 
populations (Ford 2002; Dannewitz et al. 2004; 
Almodovar et al. 2006).

A sufficient amount of genetic variation is re-
quired for the persistence of self-recruiting popu-
lations, and genetic variation is important for the 
survival and success of cultivated smolts in natural 
ecosystems. If the cultivated population has been 
through a bottleneck and the genetic variation is 
low, due to a low effective population size, the cul-
tivated fish may suffer from inbreeding depression, 
reducing the fitness considerably. Hence, the release 
may be more harmful than good for the augmented 
population.

Conclusion

With all these differences between hatchery and 
wild fish, what is the main reason for the low suc-
cess of hatchery salmon in nature? Most probably, 
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a large part of the released hatchery salmon die be-
cause of predation soon after being released. The 
performance of hatchery fish in nature is highly in-
fluenced by their early experiences in the hatchery 
environment. Hatchery practices affect both geno-
type and phenotype of the fish and may produce 
an inadequate behavior versus predators. Thus, the 
time period the fish spend in the hatchery may be 
minimized to offer the fish maximum experience in 
natural environments. This implies that the size of 
the managed population will be regulated by natu-
ral mechanisms and factors in the systems. Alterna-
tively, the complexity of the hatchery environment 
should be increased to produce fish exhibiting ad-
equate avoidance behavior against predators.

Habitat Restorations and  
Enhancement

For Atlantic salmon, less is known about habitat 
restoration than on effects and successes of fish re-
leases, and much knowledge gained is from experi-
ments and management operations on other salmon 
species. However, the abundance and growth can 
be augmented through habitat manipulations im-
proving feeding opportunities and water quality 
(Lacroix 1996; Hesthagen et al. 1999), increasing 
the spawning habitat by introducing gravel (Avery 
1996; House 1996; Scruton et al. 1997), increas-
ing the productive area by constructing side chan-
nels (Pethon et al. 1998), removing blockages and 
construct fishways (Saltveit 1989; Simenstad et al. 
2005), and changing the flow regime (Armstrong 
et al. 2003). If the natural production of a river is 
to be restored, one should identify the constraints 
for salmon habitat use and relieve these constraints 
(Ebersole et al. 1997). One should keep in mind, 
however, that any river has a limited carrying capac-
ity, although this may be increased to some degree 
by habitat improvements. To augment the popula-
tion abundance, the easiest means may be to in-
crease the exploitable area for the fish.

Fishways

Salmonid populations can be enhanced if the fish 
are allowed to colonizing new habitats upstream 
their original distribution area (Ritter 1997; Bryant 
et al. 1999). Such improvements may be accompa-
nied by stocking programs to increase the coloniza-

tion rate. The first step in colonizing new habitats 
is to provide free fish migration over natural and/
or man-made barriers as waterfalls, dams, and tur-
bines. Constructions of fishways and nature-like 
bypasses similar to natural streams facilitates the 
upstream migration for salmon.

Often, however, fishways can delay or prevent 
the upstream migration of Atlantic salmon. The 
fish may have problems in locating entrances and 
successfully ascending them. To help avoid this, 
Katopodis (2005) presents a toolkit for fish passag-
es. It is essential that entrances are designed and lo-
cated properly to enable and to stimulate fish ascent 
(Clay 1995; Larinier 1998). Spawners search for the 
highest flow (Williams 1998) and if the fish need to 
leap, a downstream deep pool is needed where fish 
can initiate jumps. If care is not taken, the fish may 
be attracted towards impassable routes from turbine 
outlets or dams rather than to the bypass (Andrew 
and Geen 1960; Brayshaw 1967; Arnekleiv and 
Kraabøl 1996; Thorstad et al. 2003). For instance, 
upstream migrating salmon in the regulated River 
Tuloma, Kola Peninsula were rather reluctant to en-
ter fish passes, occasionally even backing out after 
having entered the pass. The fish preferred to seek 
their way in strong current (i.e., the tailrace and spill-
way discharges below the Tuloma dam [Karppinen 
et al. 2002]). Upstream migrating Atlantic salmon 
in River Conon, northern Scotland were delayed 
and did not navigate through a series of four fish 
passes and an impoundment (Gowans et al. 2003). 
The proportion of the fish passing the individual 
obstructions ranged from 63% to 100%. No fish 
were lost when moving through the impoundment, 
whereas 63% of the approaching salmon passed 
each of the lifts. The fish were delayed for 1–41 d at 
a pool-and-overfall ladder and 1–52 d at a Borland 
fish lift. In the River Nidelva, south Norway, the 
salmon migrated quickly up to the tunnel outlet of 
the power station, but stayed on average 20 d (0–71 
d) in the outlet area before continuing upstream 
(Thorstad et al. 2003). The size and design of the 
tunnel outlet, whether the outlet is submerged or 
not, and the slope of the tunnel appeared important 
for the salmon ascent.

Fishways can be size-selective. The Isohara 
fishway, close to the mouth of the regulated River 
Kemijoki, north Finland allowed one-sea-winter 
fish to pass (Laine et al. 1998). Larger, multi-sea-
winter fish were observed close to the two alterna-
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tive fish entrances without any attempt to enter. An 
inadequate fishway discharge together with poor 
attraction of the fish entrance was suspected to be 
the main reason for why they did not enter. After 
the entrance was replaced by a pool and a small wa-
terfall, no more observations were made of salmon 
gathering close to the entrance, and the number 
and maximum size of the salmon increased in the 
fishway (Laine et al. 2002). The number of multi-
sea-winter salmon passing through the fishway in 
the River Kemijoki was positively correlated with 
the mean tailwater level on the day of ascent and 
1–3 d earlier. The tailwater level did not follow the 
river discharge but the seawater level, which was af-
fected by the direction and velocity of the winds. 
Thus, the design of the entrance of the fishway is 
important, and a poor design is a migratory obstacle 
for the fish.

The colonization rate varies among species 
when new river stretches open for migratory fish. 
For example, the access of anadromous salmonids 
to the Margaret Creek water shed, southeast Alaska, 
previously blocked by a 7-m waterfall, was opened 
by a fish ladder constructed during 1989–1990. 
Pink salmon dominated numerically in the ladder 
during the subsequent 7-year study period (Bryant 
et al. 1999) and increased from 6,090 fish in 1991 
to 39,499 fish in 1997. The number of sockeye and 
coho salmon passing the ladder ranged from 73 to 
408 and 111–1,986, respectively. Few chum salmon 
O. keta and steelhead entered the ladder. Reasons 
for this may be that chum salmon does not ascend 
obstacles as easily as other anadromous species (Hale 
et al. 1985) and steelhead was less abundant in the 
watershed than other salmonids. Further examples 
of successful colonization of new areas by natural 
waterfalls by Atlantic salmon are described by Ritter 
(1997) from Torrent and Exploits rivers, west and 
east coast of insular Newfoundland and LaHave 
River, Nova Scotia.

Spawning Habitat Improvements

Gravelling can be a successful way of enhancing 
Atlantic salmon populations in rivers with reduced 
spawning opportunities (Merz and Setka 2004). 
For instance, gravel size, depth and compactness, 
and extent of suitable gravel available at the redd 
site affect density of redds in steelhead, in addition 
to water depth, velocity, and temperature (Orcutt 

et al. 1968). Spawning-bed enhancements have in-
creased the survival and growth of Chinook salmon 
embryos in a regulated California stream (Merz et 
al. 2004). Salmon embryos planted in the improved 
spawning substratum exhibited higher rates of sur-
vival to the swim-up stage than embryos planted in 
the original spawning gravels. Furthermore, in the 
Mokelumne River, California Central Valley, 976 
m3 of clean river gravel (25–150 mm) was placed 
in berm and gravel bars along a 45-m enhancement 
site (Merz and Setka 2004). After gravel placement, 
the channel water velocities, intergravel permeabil-
ity, and dissolved oxygen increased and the channel 
depth was reduced. Adult Chinook salmon began 
spawning at the previously unused site 2 month af-
ter gravel placement. However, in some cases, grav-
elling is not enough to create new salmonid spawn-
ing grounds (Zeh and Dönni 1994). In the River 
High-Rhine, Switzerland, washed gravel (grain size 
16–50 mm) were introduced in an impounded sec-
tion of the river to restore the spawning grounds 
for brown trout and Arctic grayling. Neither brown 
trout nor rainbow trout were observed spawning 
in the gravel beds. On the other hand, successful 
embryonic and larval development of grayling was 
observed, meaning that the new spawning area was 
suitable for this species.

Juvenile Habitat Improvements

Habitat preferences of salmonids vary with species 
and life stage and season (Heggenes et al. 1999). For 
instance, Atlantic salmon is distributed in faster-
flowing habitats compared with brown trout, and 
often, but not always, they are associated with rivers 
with gravel bottom (Riley et al. 2006). The time as 
embryo in the bottom substratum and the transi-
tion from dependence on maternal yolk reserves to 
external feeding are critical periods. For instance, 
salmonid embryos are susceptible to fine-sediment 
infiltration during the incubation period (Julien 
and Bergerson 2006). In a field experiment, it was 
found that survival of pre-eyed, eyed, and hatched 
stages of Atlantic salmon were all negatively cor-
related with the percentage of fine sediment enter-
ing the incubation baskets. The pre-eyed and eyed 
stages were most strongly affected by silts and clays 
(<0.063 mm), although this size-class represented 
only a small fraction (0.03–0.41%) of the grain size 
inside. The hatched stage was most strongly correlat-
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ed with the infiltration of medium sand (0.25–0.50 
mm) material. On average, 66% of the implanted 
embryos survived to the pre-eyed stage of develop-
ment compared to 63% for the eyed and 48% for 
the hatched stages of development.

At the commencement of external feeding, the 
fry are especially vulnerable to predators and adverse 
environmental conditions. The availability of slowly 
flowing habitats at the stream margins is crucial dur-
ing the first month of independence (Armstrong and 
Nislow 2006). Atlantic salmon parr perform onto-
genetic niche shifts, and later during summer, age-0 
parr obtain high consumption rates over a wider 
range of current velocities (0.2–0.6 m/s) (Nislow et 
al. 1999), and the fish are often found in shallow 
riffle-chute habitats (Heggenes et al. 2002). Larger 
parr exploit even faster current velocities and greater 
water depths. During winter, the parr often hide in 
the gravel substratum or stay in deep and low-ve-
locity habitats during daytime, but may seek more 
open feeding areas during night (Maki-Petays et al. 
2004; Riley et al. 2006). High concentrations of fine 
sediment in the substratum degrades the habitat for 
steelhead parr (Suttle et al. 2004), and the same prob-
ably holds for juvenile Atlantic salmon in rivers, al-
though there are differences in responses to substrate 
and cover among species (Sergeant and Beauchamp 
2006). Thus, it appears important both to consider 
substrate conditions and current velocity and water 
level when restoring Atlantic salmon rivers (Arm-
strong et al. 2003; Hendry et al. 2003).

To manage salmon rivers well, it is important 
to protect existing high-quality habitats (Fullerton 
et al. 2006). For Pacific salmon, Roni et al. (2002) 
recommended that the restoration then should fo-
cus on connecting isolated high-quality fish habi-
tats such as instream or off-channel habitats made 
inaccessible by culverts or other artificial obstruc-
tions. Removing small artificial barriers that hinder 
upstream migration of fish is a major task in ripar-
ian habitat restoration (O’Hanley and Tomberlin 
2005). In cases where the juvenile habitat is highly 
degraded, such as in the case of hydropower devel-
opments, artificial fluvial habitat channels may be 
constructed to enhance the natural production of 
juvenile fish as successfully done in south-central 
Newfoundland (Enders et al. 2007). The introduc-
tion of boulder clusters in the river has been found 
to be another effective method of increasing the 
parr density of Atlantic salmon in rivers, as shown 

in Joe Farrell’s Brook, Newfoundland (de Jong et al. 
1997). Also, V-dams have proven to be effective in 
increasing juvenile density through the creation of 
a diverse pool habitat. Half-log covers increased the 
number of age-0 parr through an increased instream 
cover. The usefulness of the placement of boulder 
weirs appears however, to vary among species (Roni 
et al. 2006) and may be even more useful when 
restoring brown trout than Atlantic salmon rivers 
(Heggenes et al. 1999).

Atlantic salmon parr feed largely on larvae of 
aquatic insects (Lillehammer 1973), and the qual-
ity and quantity of the food are often viewed as 
important factors influencing the carrying capac-
ity of salmon rivers (Jonsson et al. 1998). Presence 
of woody debris in streams is one factor influenc-
ing the abundance of insect larvae (Giannico and 
Hinch 2003; Milner and Gloyne-Phillips 2005); 
it provides greater surface areas for the growth of 
the prey species and shelter for the fish (Johnson 
et al. 2005). Furthermore, woody debris may give 
overhead cover that decreases predation risk and of-
fer decreased contact between the fish. It also de-
creases the current velocity and thereby decreases 
the energetic costs of the fish in the streams (Crook 
and Robertson 1999). Presence of dead wood in 
streams is found to be profitable for the produc-
tion in a number of salmonid species (Johnson et al. 
2005; Fox and Bolton 2007). One way of providing 
woody debris in salmon rivers is to leave an effective 
riparian buffer zone along the banks where trees and 
other plants are allowed to grow undisturbed (Hab-
erstock et al. 2000; Opperman and Merenlender 
2004).

Liming of Acidified Rivers

Acidification of salmonid rivers represents a major 
threat to salmon production. Prominent physiologi-
cal disturbances in fish exposed to acid water are 
failures in ionic regulation, acid–base regulation, 
circulation, and respiration, of which the first and 
last are held to be the primary causes of fish death 
in both acid and aluminum-rich water (McDon-
ald 1983; Exley and Phillips 1988; Berntssen et 
al. 1997). Atlantic salmon is more sensitive to acid 
water than other naturally occurring salmonids in 
Scandinavia (Rosseland and Skogheim 1984), and 
the most sensitive stage is the smolt stage (Rosse-
land et al. 1986). Applications of crushed limestone 
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in acidic rivers enhanced Atlantic salmon spawning 
habitat and improved the survival of juvenile sal-
monids (Staurnes et al. 1996). Liming of an acidic 
second-order stream, Fifteen Mile Brook, Canada, 
resulted in a twofold increase in the number of oc-
casions where more than a few juvenile Atlantic 
salmon survived severe acidic episodes in the brook 
(Lacroix 1996). Densities of age-0 salmon were re-
lated to seasonal and interannual variability in pH, 
but they were always greater in the limed section 
than in the unlimed. Atlantic salmon consistently 
placed most of their redds (78%) in the limed sec-
tion, and these were often on the limestone bar.

Water Level and Flow Regulation

Low river flow restricts the upstream migration of 
the fish. Low flow precludes salmon from entering 
small streams, and the effect is strongest for large 
fish early in the migration season (Jonsson et al. 
1990b, 2007; Tetzlaff et al. 2005). A similar effect 
on migratory behavior is observed for brown trout, 
although the species is less sensitive than Atlantic 
salmon (Jonsson and Jonsson 2002). In the River 
Gudbrandsdalslågen, east Norway, Arnekleiv and 
Kraabøl (1996) found that ferox trout (large fish-
eating brown trout) did not pass the outlet chan-
nel from the power station when the residual flow 
decreased below 20 m3/s, and the upstream migra-
tion could be initiated by an artificial freshest of 
60 m3/s. Thus, increased water level at the time of 
migration may facilitate the upstream migration in 
rivers and streams suffering from low flow (Jonsson 
et al. 2007).

Changes in flow patterns due to impound-
ments or partial barriers may affect habitat and 
mortality of young fish living in the river. Sudden 
reduction in river flow may cause high mortality of 
juvenile Atlantic salmon and brown trout through 
stranding (Bradford 1997; Halleraker et al. 2003; 
Berland et al. 2004). The chance of stranding was 
higher when the water temperature was low (e.g., 
winter conditions < 4.58C) compared with higher 
temperatures during late summer and early autumn. 
This is probably because of lower fish activity during 
the cold season and a substrate-seeking behavior. 
Stranding is not equal to mortality, as the fish can 
survive for several hours in the substrate after de-
watering. A prolonged shut down procedure of the 
turbines in a regulated river decreased the stranding 

of salmon parr drastically under spring conditions. 
In an experiment with free-ranging parr and parr 
restricted to an area near the riverbank, Berland et 
al. (2004) found no stranding of free-ranging parr 
during rapid flow reductions during daytime. In the 
containment pen, the parr distributed themselves 
relatively evenly among the cells. They moved about 
more at changing than at stable flows, and most fish 
that were stranded were observed during rapid flow 
reduction at night. Thus, rapid reductions in water 
flow may cause increased mortality in salmon parr 
in shallow habitats if movements are restricted, and 
less abrupt water level fluctuations might be helpful 
to the fish.

Salmon Management and  
Research Tasks

Population or Habitat Restoration?

Restoration, rehabilitation, and enhancement of 
salmonid populations may draw on any of the tech-
niques and methods mentioned earlier in this paper. 
The preferable approach will depend on the purpose 
of the activity, the status of the population, and the 
condition of the habitat. In a situation with weak or 
declining salmonid populations caused by increased 
mortality at sea due to climate change (Friedland et 
al. 2000; Jonsson and Jonsson 2004a), there may 
be a wish to (1) augment the bottlenecks of the ju-
venile production by restoring or rehabilitating the 
habitat, (2) increase the productive river area by 
building fishways to previously salmon-free habitats 
upstream, or (3) release fish to enhance the amount 
of seaward migration smolts.

The abundance of salmonid populations is 
variable with long-term trends upon which there are 
short-term fluctuations (Einum et al. 2003). From 
the 1980s onwards, the production of wild Atlantic 
salmon at sea has decreased gradually, viewed to be 
the beginning of a negative, long-term trend (Beau-
grand and Reid 2003; Jonsson and Jonsson 2004a). 
Growth and survival rates have decreased at the same 
time that the populations exhibit younger sea-age at 
sexual maturity. The result is more relatively small 
one-sea-winter fish and fewer old, large adults (Jons-
son and Jonsson 2004b; Boyland and Adams 2006). 
Since there is no sign of density dependent mortal-
ity in Atlantic salmon at sea (Jonsson et al. 1998; 
Niemelä et al. 2005), the population decline may be 
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mitigated by an increased smolt output. Both habi-
tat improvements and opening of new river and lake 
habitats for salmon are ways of expanding the car-
rying capacity of water courses. Furthermore, eggs 
may be planted if spawners are lacking, whereas parr 
releases can be successful if the spawning but not the 
juvenile rearing habitats are destroyed. Smolt release 
is a possible way of escaping a population regulatory 
bottleneck in freshwater, as is postsmolt release at 
sea. However, the latter may be avoided because of 
the risk of spreading the hatchery fish among rivers 
when they return to freshwater for spawning (Han-
sen and Jonsson 1991a).

Regulated rivers, characterized by rapid fluctua-
tions in water flow and temperature, may offer poor 
juvenile rearing habitats favoring smolt releases be-
fore releases of younger fish. The marine mortality of 
hatchery Atlantic salmon released at the smolt stage is 
often very high owing to phenotypic changes caused 
by the juvenile rearing environment (Dannewitz et 
al. 2003), and inadequate behavior of hatchery fish 
towards predators (Brown and Laland 2001). In such 
cases, research efforts may be channeled to improving 
the sea-survival of the fish. Successful restoration and 
rehabilitation of salmon populations assume that the 
fish reproduce successfully. Reproductive success of 
released hatchery salmon is generally lower than that 
of wild conspecifics because of inadequate spawning 
behavior (Fleming et al. 1996, 1997, 2000). If a pop-
ulation is on the brink of extinction, the population 
may be saved by cryopreservation of spermatozoa in 
a gene bank (Gallant et al. 1993; Jodun et al. 2007) 
to be used for production and release of hatchery 
fish if and when the living conditions in the river are 
improved. There are also hatcheries serving as gene 
banks by keeping live fish (Bergan et al. 1991). This 
may be helpful in a critical situation, but with time, 
hatchery selection may gradually change such popu-
lations from their source populations. Hatchery pre-
served populations may also have a small genetic basis 
and be different from the original populations due to 
genetic drift, reducing their value as broodstock for 
supplementary releases. However, release of hatchery 
fish is the only known method to increase population 
sizes above the carrying capacity of the juvenile rear-
ing habitat, when this is rehabilitated and enlarged to 
its maximum (e.g., by use of fishways).

Although stocking for population enhance-
ment has been practiced by resource managers for 
more than 150 years, the general view now is that 

habitat restoration and rehabilitation are preferred 
over fish releases where these can be applied. Rea-
sons are possible negative genetic effects on the lo-
cal population and the risk of spreading contagious 
diseases from hatcheries. Hatchery salmon released 
in nature have in some cases led to loss of genetic 
variability due to a small effective population size of 
the stocked fish with introgression and adaptive di-
vergences in wild populations (Crozier 1998; Utter 
1998). Therefore, one has to balance the long-term 
risk of genetic change in natural fish populations 
against the immediate benefits of artificially increas-
ing fish abundance (Tringali and Bert 1998). This 
is an often encountered trade-off for fisheries man-
agers since genetics of weak populations are easily 
changed by massive releases because of the small size 
of the local gene pools. As long as there are wild 
spawners present and suitable opportunities for re-
production and juvenile rearing in rivers, it appears 
better to allow the fish to reproduce naturally than 
using spawners as broodstock for artificial rearing 
and release.

Adaptive Management

By using adaptive management practices (Miller et 
al. 1995), one can reduce uncertainty and improve 
the remedial actions in light of the results from a 
continued monitoring of the population in ques-
tion (Figure 1). The establishment of restoration 
goals is often hindered by limited knowledge about 
the status of the population, the reason for long-
term trends and short-term fluctuations, the role 
of specific components in the ecosystems exploited 
by the salmon, the vulnerability to loss of diversity, 
and the economic implications involved. Goal set-
ting and the attainment of goals are also hindered 
because ecosystems are dynamic and populations 
and species evolve in response to selection pressures. 
Salmonid populations shift with changes in cli-
mate and human impacts, and they migrate among 
habitats. Consequently, even if we have a vision of 
a desirable future, it is difficult to foresee a precise 
pathway to its fulfillment. Management decisions 
are taken in the face of uncertainty, but by using 
the adaptive management technique, we gradually 
reduce uncertainty by a continued evaluation of the 
results used to improving the remedial actions. Fur-
thermore, we have to view salmon as an integrated 
part of the ecosystem, meaning that they depend 
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Figure 1.—Adaptive management of populations.

on the other components of their ecosystem. When 
restoring salmon populations and/or habitats, we 
therefore have to secure that the various needs for 
living in the habitat are fulfilled.

Density-dependent mechanisms constrain 
the parr production of freshwater habitats, as ear-
lier explained. To manage Atlantic salmon popula-
tion, one should monitor the habitats and densi-
ties of the age-groups of parr, establish status and 
trends, and compare the results with expectations 
based on experience from similar localities (Fig-
ure 1). Are parr densities significantly lower than 
found in good salmon rivers at similar latitudes? Are 
there too few young of the year or are older parr 
lacking? If the answer is yes to the first question, 
there may be a lack of spawners, the habitat may 

be unsuitable for spawning or early rearing, or the 
population is threatened by pollution (e.g., acid-
ity, oxygen deficit, heavy metals) or a disease. These 
are all conditions that we may judge based on local 
knowledge, results of fishing efforts, observations 
on the spawning grounds, or experimental tests by 
use of, for instance, experiments such as planting 
eggs in incubation boxes buried in the spawning 
area or parr releases (see Population Restoration and 
Enhancement). If only older parr are lacking from 
the relevant habitats, they may have emigrated or 
an earlier year’s recruitment has failed. At moder-
ate and northern latitudes, there should at least be 
1-year-old, if not older, parr, present. At southern 
localities, a large part of the smolt may be 1 year old, 
meaning that older parr can be naturally scarce.
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Based on this assessment, one goals and op-
erational objectives can be set. One may wish to 
restore inferior salmon habitats or open new areas 
of a river for salmon above a previously impass-
able water fall. Furthermore, the spawning stock 
may be small and needs to be increased. If this is 
difficult, an alternative is egg planting at suitable 
sites in the river. If there is a lack of parr, releases of 
parr or smolt may be required. One can determine 
required measures and develop and implement the 
remedial action plan to restore or enhance salmon 
populations.

By annual assessments of the populations, it is 
possible to evaluate the effects of the efforts and use 
the results to change the management strategy and 
actions to further improve the results in relation to 
any environmental or population change that might 
occur. Thus, the adaptive management program 
functions as a long-term experiment for optimal 
production of salmon rivers.

Research Tasks

An important research task is to breed a more wild-
like phenotype than the regular hatchery salmon. 
To do that, we need new knowledge on how hatch-
ery conditions change the fitness of cultured fish in 
nature. We need more information on the plasticity 
of the genotype–environment interactions and how 
hatchery conditions influence the fitness in the wild 
of liberated fish. For instance, how does the water 
current velocity influence hormonal changes and 
what are the phenotypic expressions of the affected 
individuals (McCormick et al. 2003)?

Elevated egg incubation temperature affects the 
subsequent metabolic and growth rates of the fish 
with possible effects on age and size at smolting and 
sexual maturity (Jonsson et al. 2005), but we lack a 
quantitative understanding of how important egg 
incubation temperature is for the subsequent maxi-
mum growth rate, optimal temperature for growth 
and growth efficiency (Jonsson et al. 2001), and life 
history characters associated with growth through 
norms of reaction (Jonsson and Jonsson 2004a). 
There is also a need for further studies on causes for 
the insufficient antipredator behavior of hatchery 
salmon and how this behavior can best be changed 
by modifying rearing facilities. Early habitat com-
plexity influences later behavioral performance in 
Atlantic cod (Salvanes and Braithwaite 2006), and 

there is reason to believe that a similar relationship 
may hold for Atlantic salmon.

There is a need for new knowledge on how the 
habitat constrains salmon production. What are the 
mechanisms of density regulation, and how are the 
environmental conditions influencing population 
abundance (Einum and Nislow 2005)? Is winter 
or summer flow most limiting for the survival of 
young fish in rivers? How can flow in regulated river 
be modified to increase the smolt production? How 
is flow in fishways constraining adult fish size far-
ther upstream? Furthermore, there is growing con-
cern about ecosystem effects of hatchery salmon on 
communities and ecosystems (Pascual et al. 2002; 
Waknitz et al. 2003; Baxter et al. 2004). Salmon 
have the potential to reconstruct local food webs, 
and research is needed to evaluate this risk, espe-
cially when the species is spreads beyond its native 
range. Atlantic salmon is known as an ineffective 
colonizer (Naylor et al. 2005), but the current range 
represents colonization after the last glaciation pe-
riod, meaning that there is a chance that releases in 
new areas may result in the establishment of self-
sustaining populations.
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